Thymic Versus Induced Regulatory T Cells – Who Regulates the Regulators?
نویسندگان
چکیده
Physiological health must balance immunological responsiveness against foreign pathogens with tolerance toward self-components and commensals. Disruption of this balance causes autoimmune diseases/chronic inflammation, in case of excessive immune responses, and persistent infection/immunodeficiency if regulatory components are overactive. This homeostasis occurs at two different levels: at a resting state to prevent autoimmune disease, as autoreactive effector T-cells (Teffs) are only partially deleted in the thymus, and during inflammation to prevent excessive tissue injury, contract the immune response, and enable tissue repair. Adaptive immune cells with regulatory function ("regulatory T-cells") are essential to control Teffs. Two sets of regulatory T cell are required to achieve the desired control: those emerging de novo from embryonic/neonatal thymus ("thymic" or tTregs), whose function is to control autoreactive Teffs to prevent autoimmune diseases, and those induced in the periphery ("peripheral" or pTregs) to acquire regulatory phenotype in response to pathogens/inflammation. The differentiation mechanisms of these cells determine their commitment to lineage and plasticity toward other phenotypes. tTregs, expressing high levels of IL-2 receptor alpha chain (CD25), and the transcription factor Foxp3, are the most important, since mutations or deletions in these genes cause fatal autoimmune diseases in both mice and men. In the periphery, instead, Foxp3(+) pTregs can be induced from naïve precursors in response to environmental signals. Here, we discuss molecular signatures and induction processes, mechanisms and sites of action, lineage stability, and differentiating characteristics of both Foxp3(+) and Foxp3(-) populations of regulatory T cells, derived from the thymus or induced peripherally. We relate these predicates to programs of cell-based therapy for the treatment of autoimmune diseases and induction of tolerance to transplants.
منابع مشابه
All-trans Retinoic Acid Regulates the Balance of Treg-Th17 Cells through ERK and P38 Signaling Pathway
متن کامل
O-2: Testosterone and Vitamin E administration Up-Regulates Hsp70 Protein Expression in Varicocele-induced Rats; Correlation with Leydig Cells Steroidogenesis and Germinal Cells RNA Damage
Background: Varicocele (VCL) impacts the testicular tissue partly by down-regulating the antioxidant status accomplished with reducing the intra-testicular endocrine potential. It has been reported that the HSP70 families play a critical role in spermiogenesis. Therefore, current study was aimed to evaluate the protective effect of exogenous testosterone and vitamin E administration on VCL-indu...
متن کاملFoxP3+ Regulatory T Cells in Peripheral Blood of Patients with Epithelial Ovarian Cancer
Background: Ovarian cancer is the fifth leading cause of death from malignancy in women. CD4 +CD25+FoxP3+ regulatory T (Treg) cells are a subset of T lymphocytes with great inhibitory impact on immune response. Objectives: To investigate the percentage of CD4 +CD25+FoxP3+ regulatory T cells in the peripheral blood of the Iranian patients with epithelial ovarian cancer compared to healthy women ...
متن کاملStrong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling.
CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25(+)Foxp3(+)) fro...
متن کاملWhy T cells of thymic versus extrathymic origin are functionally different.
Age-related thymic involution severely impairs immune responsiveness. Strategies to generate T cells extrathymically are therefore being explored with intense interest. We have demonstrated that T cells produced extrathymically were functionally deficient relative to thymus-derived T cells. The main limitation of extrathymic T cells is their undue susceptibility to apoptosis; they thus do not e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013